3.364 \(\int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=91 \[ \frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/3*a^2*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^2*sin(d*x+c)/d/cos(d*x+
c)^(3/2)+4*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4264, 3788, 3768, 3771, 2639, 4046, 2641} \[ \frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

(-4*a^2*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x])/(3*d*Cos
[c + d*x]^(3/2)) + (4*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \, dx\\ &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec ^2(c+d x)\right ) \, dx+\left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{3} \left (4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx-\left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{3} \left (4 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (2 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.15, size = 470, normalized size = 5.16 \[ \frac {\csc (c) \cos ^2(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 \left (\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt {\tan ^2(c)+1} \sqrt {1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt {\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac {\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt {\tan ^2(c)+1}}+\frac {2 \cos ^2(c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{2 d}-\frac {2 \csc (c) \cos ^2(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin (c) \left (-\sqrt {\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt {\cot ^2(c)+1}}+\cos ^{\frac {5}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^2 \left (\frac {\sec (c) \sin (d x) \sec ^2(c+d x)}{6 d}+\frac {\sec (c) (\sin (c)+6 \sin (d x)) \sec (c+d x)}{6 d}+\frac {\csc (c) \sec (c)}{d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

Cos[c + d*x]^(5/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*((Csc[c]*Sec[c])/d + (Sec[c]*Sec[c + d*x]^2*Sin
[d*x])/(6*d) + (Sec[c]*Sec[c + d*x]*(Sin[c] + 6*Sin[d*x]))/(6*d)) - (2*Cos[c + d*x]^2*Csc[c]*HypergeometricPFQ
[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*Sec[d*x - ArcTan[
Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt
[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + (Cos[c + d*x]^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a
*Sec[c + d*x])^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]
]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcT
an[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] +
 (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan
[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d)

________________________________________________________________________________________

fricas [F]  time = 0.61, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}{\sqrt {\cos \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 5.79, size = 371, normalized size = 4.08 \[ \frac {4 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (4 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+7 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+7*sin(1/2*d*x+1/2*c)^2*cos(1/
2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 1.27, size = 109, normalized size = 1.20 \[ \frac {2\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^2/cos(c + d*x)^(1/2),x)

[Out]

(2*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*a^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3
*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int \frac {2 \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2/cos(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(2*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(sec(c + d*x)**2/sqrt(cos(c + d*x)), x) + Integ
ral(1/sqrt(cos(c + d*x)), x))

________________________________________________________________________________________